Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.831
1.
Sci Adv ; 10(19): eadm7515, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728394

The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.


Antigens, Neoplasm , CD8-Positive T-Lymphocytes , HLA-E Antigens , Histocompatibility Antigens Class I , Macaca mulatta , Animals , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Antigens, Neoplasm/immunology , Humans , Cancer Vaccines/immunology , Antigen Presentation/immunology , Cell Line, Tumor , Male , Cytomegalovirus/immunology , Mesothelin , Acid Phosphatase
2.
Front Immunol ; 15: 1360140, 2024.
Article En | MEDLINE | ID: mdl-38711513

Introduction: Modified Vaccinia Virus Ankara (MVA) is a safe vaccine vector inducing long- lasting and potent immune responses. MVA-mediated CD8+T cell responses are optimally induced, if both, direct- and cross-presentation of viral or recombinant antigens by dendritic cells are contributing. Methods: To improve the adaptive immune responses, we investigated the role of the purinergic receptor P2X7 (P2RX7) in MVA-infected feeder cells as a modulator of cross-presentation by non-infected dendritic cells. The infected feeder cells serve as source of antigen and provide signals that help to attract dendritic cells for antigen take up and to license these cells for cross-presentation. Results: We demonstrate that presence of an active P2RX7 in major histocompatibility complex (MHC) class I (MHCI) mismatched feeder cells significantly enhanced MVA-mediated antigen cross-presentation. This was partly regulated by P2RX7-specific processes, such as the increased availability of extracellular particles as well as the altered cellular energy metabolism by mitochondria in the feeder cells. Furthermore, functional P2RX7 in feeder cells resulted in a delayed but also prolonged antigen expression after infection. Discussion: We conclude that a combination of the above mentioned P2RX7-depending processes leads to significantly increased T cell activation via cross- presentation of MVA-derived antigens. To this day, P2RX7 has been mostly investigated in regards to neuroinflammatory diseases and cancer progression. However, we report for the first time the crucial role of P2RX7 for antigen- specific T cell immunity in a viral infection model.


CD8-Positive T-Lymphocytes , Cross-Priming , Dendritic Cells , Receptors, Purinergic P2X7 , Vaccinia virus , Receptors, Purinergic P2X7/immunology , Receptors, Purinergic P2X7/metabolism , Cross-Priming/immunology , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Vaccinia virus/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors , Mice, Inbred C57BL , Antigen Presentation/immunology , Antigens, Viral/immunology , Humans , Viral Vaccines/immunology
3.
Int J Mol Sci ; 25(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38732169

Infections may affect the course of autoimmune inflammatory diseases of the central nervous system (CNS), such as multiple sclerosis (MS). Infections with lactate dehydrogenase-elevating virus (LDV) protected mice from developing experimental autoimmune encephalomyelitis (EAE), a mouse counterpart of MS. Uninfected C57BL/6 mice immunized with the myelin oligodendrocyte glycoprotein peptide (MOG35-55) experienced paralysis and lost weight at a greater rate than mice who had previously been infected with LDV. LDV infection decreased the presentation of the MOG peptide by CD11b+CD11c+ dendritic cells (DC) to pathogenic T lymphocytes. When comparing non-infected mice to infected mice, the histopathological examination of the CNS showed more areas of demyelination and CD45+ and CD3+, but not Iba1+ cell infiltration. These results suggest that the protective effect of LDV infection against EAE development is mediated by a suppression of myelin antigen presentation by a specific DC subset to autoreactive T lymphocytes. Such a mechanism might contribute to the general suppressive effect of infections on autoimmune diseases known as the hygiene hypothesis.


Dendritic Cells , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Lactate dehydrogenase-elevating virus , Mice, Inbred C57BL , Multiple Sclerosis , Myelin-Oligodendrocyte Glycoprotein , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Myelin-Oligodendrocyte Glycoprotein/immunology , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , Multiple Sclerosis/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/virology , Lactate dehydrogenase-elevating virus/immunology , CD11b Antigen/metabolism , CD11b Antigen/immunology , Antigen Presentation/immunology , Female , CD11c Antigen/metabolism , Cardiovirus Infections/immunology , Peptide Fragments/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Proc Natl Acad Sci U S A ; 121(19): e2403031121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38687785

The loading of processed peptides on to major histocompatibility complex II (MHC-II) molecules for recognition by T cells is vital to cell-mediated adaptive immunity. As part of this process, MHC-II associates with the invariant chain (Ii) during biosynthesis in the endoplasmic reticulum to prevent premature peptide loading and to serve as a scaffold for subsequent proteolytic processing into MHC-II-CLIP. Cryo-electron microscopy structures of full-length Human Leukocyte Antigen-DR (HLA-DR) and HLA-DQ complexes associated with Ii, resolved at 3.0 to 3.1 Å, elucidate the trimeric assembly of the HLA/Ii complex and define atomic-level interactions between HLA, Ii transmembrane domains, loop domains, and class II-associated invariant chain peptides (CLIP). Together with previous structures of MHC-II peptide loading intermediates DO and DM, our findings complete the structural path governing class II antigen presentation.


Antigens, Differentiation, B-Lymphocyte , Cryoelectron Microscopy , Histocompatibility Antigens Class II , Humans , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/chemistry , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , HLA-DR Antigens/chemistry , HLA-DR Antigens/metabolism , HLA-DR Antigens/immunology , Antigen Presentation , HLA-DQ Antigens/chemistry , HLA-DQ Antigens/metabolism , HLA-DQ Antigens/immunology , Models, Molecular , Endoplasmic Reticulum/metabolism , Protein Conformation , Protein Binding
5.
Mol Immunol ; 170: 1-8, 2024 Jun.
Article En | MEDLINE | ID: mdl-38579449

CD1 molecules are well known for their role in binding and presenting lipid antigens to mediate the activation of CD1-restricted T cells. However, much less appreciated is the fact that CD1 molecules can have additional "unconventional" roles which impact the activation and functions of CD1-expressing cells, ultimately controlling tissue homeostasis as well as the progression of inflammatory and infectious diseases. Some of these roles are mediated by so-called reverse signalling, by which crosslinking of CD1 molecules at the cell surface initiates intracellular signalling. On the other hand, CD1 molecules can also control metabolic and inflammatory pathways in CD1-expressing cells through cell-intrinsic mechanisms independent of CD1 ligation. Here, we review the evidence for "unconventional" functions of CD1 molecules and the outcomes of such roles for health and disease.


Antigen Presentation , Antigens, CD1 , Humans , Antigen Presentation/immunology , Antigens, CD1/immunology , Antigens, CD1/metabolism , Animals , Signal Transduction/immunology , T-Lymphocytes/immunology , Inflammation/immunology , Lymphocyte Activation/immunology
6.
Front Immunol ; 15: 1335975, 2024.
Article En | MEDLINE | ID: mdl-38605963

Lactic acid bacteria (LAB) possess the ability to argument T cell activity through functional modification of antigen presenting cells (APCs), such as dendritic cells (DCs) and macrophages. Nevertheless, the precise mechanism underlying LAB-induced enhancement of antigen presentation in APCs remains incompletely understood. To address this question, we investigated the detailed mechanism underlying the enhancement of major histocompatibility complex (MHC) class I-restricted antigen presentation in DCs using a probiotic strain known as Lactococcus lactis subsp. Cremoris C60. We found that Heat-killed-C60 (HK-C60) facilitated the processing and presentation of ovalbumin (OVA) peptide antigen OVA257-264 (SIINFEKL) via H-2Kb in bone marrow-derived dendritic cells (BMDCs), leading to increased generation of effector CD8+ T cells both in vitro and in vivo. We also revealed that HK-C60 stimulation augmented the activity of 20S immunoproteasome (20SI) in BMDCs, thereby enhancing the MHC class I-restricted antigen presentation machinery. Furthermore, we assessed the impact of HK-C60 on CD8+ T cell activation in an OVA-expressing B16-F10 murine melanoma model. Oral administration of HK-C60 significantly attenuated tumor growth compared to control treatment. Enhanced Ag processing and presentation machineries in DCs from both Peyer's Patches (PPs) and lymph nodes (LNs) resulted in an increased tumor antigen specific CD8+ T cells. These findings shed new light on the role of LAB in MHC class-I restricted antigen presentation and activation of CD8+ T cells through functional modification of DCs.


Antigen Presentation , Dendritic Cells , Animals , Mice , Histocompatibility Antigens Class I , CD8-Positive T-Lymphocytes , Antigens , Ovalbumin , Major Histocompatibility Complex
7.
Respir Res ; 25(1): 182, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664707

OBJECTIVE: Asthma stands as one of the most prevalent chronic respiratory conditions in children, with its pathogenesis tied to the actived antigen presentation by dendritic cells (DCs) and the imbalance within T cell subgroups. This study seeks to investigate the role of the transcription factor EB (TFEB) in modulating the antigen presentation process of DCs and its impact on the differentiation of T cell subgroups. METHODS: Bone marrow dendritic cells (BMDCs) were activated using house dust mites (HDM) and underwent RNA sequencing (RNA-seq) to pinpoint differentially expressed genes. TFEB mRNA expression levels were assessed in the peripheral blood mononuclear cells (PBMCs) of both healthy children and those diagnosed with asthma. In an asthma mouse model induced by HDM, the TFEB expression in lung tissue DCs was evaluated. Further experiments involved LV-shTFEB BMDCs co-cultured with T cells to explore the influence of TFEB on DCs' antigen presentation, T cell subset differentiation, and cytokine production. RESULTS: Transcriptomic sequencing identified TFEB as a significantly differentially expressed gene associated with immune system pathways and antigen presentation. Notably, TFEB expression showed a significant increase in the PBMCs of children diagnosed with asthma compared to healthy counterparts. Moreover, TFEB exhibited heightened expression in lung tissue DCs of HDM-induced asthmatic mice and HDM-stimulated BMDCs. Silencing TFEB resulted in the downregulation of MHC II, CD80, CD86, and CD40 on DCs. This action reinstated the equilibrium among Th1/Th2 and Th17/Treg cell subgroups, suppressed the expression of pro-inflammatory cytokines like IL-4, IL-5, IL-13, and IL-17, while augmenting the expression of the anti-inflammatory cytokine IL-10. CONCLUSION: TFEB might have a vital role in asthma's development by impacting the antigen presentation of DCs, regulating T cell subgroup differentiation, and influencing cytokine secretion. Its involvement could be pivotal in rebalancing the immune system in asthma. These research findings could potentially unveil novel therapeutic avenues for treating asthma.


Antigen Presentation , Asthma , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Dendritic Cells , Dendritic Cells/immunology , Dendritic Cells/metabolism , Asthma/immunology , Asthma/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Mice , Antigen Presentation/immunology , Humans , Child , Female , Male , Cells, Cultured , Mice, Inbred BALB C
8.
Nat Methods ; 21(5): 846-856, 2024 May.
Article En | MEDLINE | ID: mdl-38658646

CD4+ T cells recognize peptide antigens presented on class II major histocompatibility complex (MHC-II) molecules to carry out their function. The remarkable diversity of T cell receptor sequences and lack of antigen discovery approaches for MHC-II make profiling the specificities of CD4+ T cells challenging. We have expanded our platform of signaling and antigen-presenting bifunctional receptors to encode MHC-II molecules presenting covalently linked peptides (SABR-IIs) for CD4+ T cell antigen discovery. SABR-IIs can present epitopes to CD4+ T cells and induce signaling upon their recognition, allowing a readable output. Furthermore, the SABR-II design is modular in signaling and deployment to T cells and B cells. Here, we demonstrate that SABR-IIs libraries presenting endogenous and non-contiguous epitopes can be used for antigen discovery in the context of type 1 diabetes. SABR-II libraries provide a rapid, flexible, scalable and versatile approach for de novo identification of CD4+ T cell ligands from single-cell RNA sequencing data using experimental and computational approaches.


CD4-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class II , CD4-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Animals , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/chemistry , Mice , Humans , Diabetes Mellitus, Type 1/immunology , Peptides/immunology , Peptides/chemistry , Antigen Presentation/immunology , Receptors, Antigen, T-Cell/immunology , Mice, Inbred NOD , Single-Cell Analysis/methods
9.
Int J Mol Sci ; 25(7)2024 Mar 23.
Article En | MEDLINE | ID: mdl-38612436

Intratumoral immune cytolytic activity (CYT), calculated as the geometric mean of granzyme-A (GZMA) and perforin-1 (PRF1) expression, has emerged as a critical factor in cancer immunotherapy, with significant implications for patient prognosis and treatment outcomes. Immune checkpoint pathways, the composition of the tumor microenvironment (TME), antigen presentation, and metabolic pathways regulate CYT. Here, we describe the various methods with which we can assess CYT. The detection and analysis of tumor-infiltrating lymphocytes (TILs) using flow cytometry or immunohistochemistry provide important information about immune cell populations within the TME. Gene expression profiling and spatial analysis techniques, such as multiplex immunofluorescence and imaging mass cytometry allow the study of CYT in the context of the TME. We discuss the significant clinical implications that CYT has, as its increased levels are associated with positive clinical outcomes and a favorable prognosis. Moreover, CYT can be used as a prognostic biomarker and aid in patient stratification. Altering CYT through the different methods targeting it, offers promising paths for improving treatment responses. Overall, understanding and modulating CYT is critical for improving cancer immunotherapy. Research into CYT and the factors that influence it has the potential to transform cancer treatment and improve patient outcomes.


Antigen Presentation , Immunotherapy , Humans , Cytotoxicity, Immunologic , Flow Cytometry , Gene Expression Profiling
10.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612472

Birinapant, an antagonist of the inhibitor of apoptosis proteins, upregulates MHCs in tumor cells and displays a better tumoricidal effect when used in combination with immune checkpoint inhibitors, indicating that Birinapant may affect the antigen presentation pathway; however, the mechanism remains elusive. Based on high-resolution mass spectrometry and in vitro and in vivo models, we adopted integrated genomics, proteomics, and immunopeptidomics strategies to study the mechanism underlying the regulation of tumor immunity by Birinapant from the perspective of antigen presentation. Firstly, in HT29 and MCF7 cells, Birinapant increased the number and abundance of immunopeptides and source proteins. Secondly, a greater number of cancer/testis antigen peptides with increased abundance and more neoantigens were identified following Birinapant treatment. Moreover, we demonstrate the existence and immunogenicity of a neoantigen derived from insertion/deletion mutation. Thirdly, in HT29 cell-derived xenograft models, Birinapant administration also reshaped the immunopeptidome, and the tumor exhibited better immunogenicity. These data suggest that Birinapant can reshape the tumor immunopeptidome with respect to quality and quantity, which improves the presentation of CTA peptides and neoantigens, thus enhancing the immunogenicity of tumor cells. Such changes may be vital to the effectiveness of combination therapy, which can be further transferred to the clinic or aid in the development of new immunotherapeutic strategies to improve the anti-tumor immune response.


Antigen Presentation , Dipeptides , Indoles , Male , Animals , Humans , Combined Modality Therapy , Disease Models, Animal
11.
J Cell Mol Med ; 28(8): e18309, 2024 Apr.
Article En | MEDLINE | ID: mdl-38613345

There are hundreds of prognostic models for ovarian cancer. These genes are based on different gene classes, and there are many ways to construct the models. Therefore, this paper aims to build the most stable prognostic evaluation system known to date through 101 machine learning strategies. We combined 101 algorithm combinations with 10 machine learning algorithms to create antigen presentation-associated genetic markers (AIDPS) with outstanding precision and steady performance. The inclusive set of algorithms comprises the elastic network (Enet), Ridge, stepwise Cox, Lasso, generalized enhanced regression model (GBM), random survival forest (RSF), supervised principal component (SuperPC), Cox partial least squares regression (plsRcox), survival support vector machine (Survival-SVM). Then, in the train cohort, the prediction model was fitted using a leave-one cross-validation (LOOCV) technique, which involved 101 different possible combinations of prognostic genes. Seven validation data sets (GSE26193, GSE26712, GSE30161, GSE63885, GSE9891, GSE140082 and ICGC_OV_AU) were compared and analysed, and the C-index was calculated. Finally, we collected 32 published ovarian cancer prognostic models (including mRNA and lncRNA). All data sets and prognostic models were subjected to a univariate Cox regression analysis, and the C-index was calculated to demonstrate that the antigen presentation process should be the core criterion for evaluating ovarian cancer prognosis. In a univariate Cox regression analysis, 22 prognostic genes were identified based on the expression profiles of 283 genes involved in antigen presentation and the intersection of genes (p < 0.05). AIDPS were developed by our machine learning-based integration method, which was applied to these 22 genes. One hundred and one prediction models are fitted using the LOOCV framework, and the C-index is calculated for each model across all validation sets. Interestingly, RSF + Lasso was the best model overall since it had the greatest average C-index and the highest C-index of any combination of models tested on the validated data sets. In comparing external cohorts, we found that the C-index correlated AIDPS method using the RSF + Lasso method in 101 prediction models was in contrast to other features. Notably, AIDPS outperformed the vast majority of models across all data sets. Antigen-presenting anti-tumour immune pathways can be used as a representative gene set of ovarian cancer to track the prognosis of patients with cancer. The antigen-presenting model obtained by the RSF + Lasso method has the best C-INDEX, which plays a key role in developing antigen-presenting targeted drugs in ovarian cancer and improving the treatment outcome of patients.


Antigen Presentation , Ovarian Neoplasms , Humans , Female , Antigen Presentation/genetics , Ovarian Neoplasms/genetics , Algorithms , Drug Delivery Systems
12.
Front Immunol ; 15: 1353570, 2024.
Article En | MEDLINE | ID: mdl-38646527

Despite significant advances in the development and refinement of immunotherapies administered to combat cancer over the past decades, a number of barriers continue to limit their efficacy. One significant clinical barrier is the inability to mount initial immune responses towards the tumor. As dendritic cells are central initiators of immune responses in the body, the elucidation of mechanisms that can be therapeutically leveraged to enhance their functions to drive anti-tumor immune responses is urgently needed. Here, we report that the dietary sugar L-fucose can be used to enhance the immunostimulatory activity of dendritic cells (DCs). L-fucose polarizes immature myeloid cells towards specific DC subsets, specifically cDC1 and moDC subsets. In vitro, L-fucose treatment enhances antigen uptake and processing of DCs. Furthermore, our data suggests that L-fucose-treated DCs increase stimulation of T cell populations. Consistent with our functional assays, single-cell RNA sequencing of intratumoral DCs from melanoma- and breast tumor-bearing mice confirmed transcriptional regulation and antigen processing as pathways that are significantly altered by dietary L-fucose. Together, this study provides the first evidence of the ability of L-fucose to bolster DC functionality and provides rational to further investigate how L-fucose can be used to leverage DC function in order to enhance current immunotherapy.


Dendritic Cells , Fucose , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Mice , Fucose/metabolism , Antigen Presentation , Female , Mice, Inbred C57BL , Cell Polarity , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Melanoma, Experimental/immunology , Lymphocyte Activation/immunology
13.
Front Immunol ; 15: 1293706, 2024.
Article En | MEDLINE | ID: mdl-38646540

Major histocompatibility complex Class II (MHCII) proteins initiate and regulate immune responses by presentation of antigenic peptides to CD4+ T-cells and self-restriction. The interactions between MHCII and peptides determine the specificity of the immune response and are crucial in immunotherapy and cancer vaccine design. With the ever-increasing amount of MHCII-peptide binding data available, many computational approaches have been developed for MHCII-peptide interaction prediction over the last decade. There is thus an urgent need to provide an up-to-date overview and assessment of these newly developed computational methods. To benchmark the prediction performance of these methods, we constructed an independent dataset containing binding and non-binding peptides to 20 human MHCII protein allotypes from the Immune Epitope Database, covering DP, DR and DQ alleles. After collecting 11 known predictors up to January 2022, we evaluated those available through a webserver or standalone packages on this independent dataset. The benchmarking results show that MixMHC2pred and NetMHCIIpan-4.1 achieve the best performance among all predictors. In general, newly developed methods perform better than older ones due to the rapid expansion of data on which they are trained and the development of deep learning algorithms. Our manuscript not only draws a full picture of the state-of-art of MHCII-peptide binding prediction, but also guides researchers in the choice among the different predictors. More importantly, it will inspire biomedical researchers in both academia and industry for the future developments in this field.


Antigen Presentation , Computational Biology , Histocompatibility Antigens Class II , Peptides , Humans , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Peptides/immunology , Computational Biology/methods , Protein Binding , Deep Learning , Algorithms
14.
Cell Death Dis ; 15(4): 265, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38615022

Antigen-specific T cell receptor-engineered T cell (TCR-T) based immunotherapy has proven to be an effective method to combat cancer. In recent years, cross-talk between the innate and adaptive immune systems may be requisite to optimize sustained antigen-specific immunity, and the stimulator of interferon genes (STING) is a promising therapeutic target for cancer immunotherapy. The level of expression or presentation of antigen in tumor cells affects the recognition and killing of tumor cells by TCR-T. This study aimed at investigating the potential of innate immune stimulation of T cells and engineered T cells to enhance immunotherapy for low-expression antigen cancer cells. We systematically investigated the function and mechanism of cross-talk between STING agonist diABZI and adaptive immune systems. We established NY-ESO-1 full knockout Mel526 cells for this research and found that diABZI activated STING media and TCR signaling pathways. In addition, the results of flow cytometry showed that antigens presentation from cancer cells induced by STING agonist diABZI also improved the affinity of TCR-T cells function against tumor cells in vitro and in vivo. Our findings revealed that diABZI enhanced the immunotherapy efficacy of TCR-T by activating STING media and TCR signaling pathways, improving interferon-γ expression, and increasing antigens presentation of tumor cells. This indicates that STING agonist could be used as a strategy to promote TCR-T cancer immunotherapy.


Neoplasms , T-Lymphocytes , Antigen Presentation , Antibodies , Flow Cytometry , Receptors, Antigen, T-Cell , Neoplasms/therapy
15.
Med Oncol ; 41(5): 107, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580762

Diospyros peregrina is a dioecious plant which is native to India. It belongs to the family of Ebenaceae and is extensively used to treat various ailments, such as leucorrhoea and other uterine-related problems. Though few studies have been on D. peregrina for their anti-tumour response, little is known. Therefore, this intrigued us to understand its immunomodulator capabilities on various types of cancer extensively. Our primary focus is on NSCLC (Non-Small Cell Lung Cancer), which is ranked as the second largest form of cancer in the world, and the treatments demand non-invasive agents to target NSCLC effectively. In an objective to generate an efficient Lung Cancer Associated Antigen (LCA) specific anti-tumour immune response, LCA was presented using dendritic cells (DCs) in the presence of D. peregrina fruit preparation (DFP). Moreover, we also investigated DFP's role in the differentiation of T-helper (TH) cells. Therefore, this study aimed at better LCA presentation mediated by DFP by activating the LCA pulsed DCs and T helper cell differentiation for better immune response. DCs were pulsed with LCA for tumour antigen presentation in vitro, with and without DFP. Differentially pulsed DCs were irradiated to co-culture with autologous and allogeneic lymphocytes. Extracellular supernatants were collected for the estimation of cytokine levels by ELISA. LDH release assay was performed to test Cytotoxic T lymphocytes (CTLs) mediated lung tumour cell cytotoxicity. Thus, DFP may be a potential vaccine to generate anti-LCA immune responses to restrict NSCLC.


Carcinoma, Non-Small-Cell Lung , Diospyros , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Antigen Presentation , Fruit , Dendritic Cells , T-Lymphocytes, Cytotoxic , Cell Differentiation
16.
Int J Biol Macromol ; 267(Pt 2): 131665, 2024 May.
Article En | MEDLINE | ID: mdl-38636758

Micropolymorphism significantly shapes the peptide-binding characteristics of major histocompatibility complex class I (MHC-I) molecules, affecting the host's resistance to pathogens, which is particularly pronounced in avian species displaying the "minimal essential MHC" expression pattern. In this study, we compared two duck MHC-I alleles, Anpl-UAA*77 and Anpl-UAA*78, that exhibit markedly different peptide binding properties despite their high sequence homology. Through mutagenesis experiments and crystallographic analysis of complexes with the influenza virus-derived peptide AEAIIVAMV (AEV9), we identified a critical role for the residue at position 62 in regulating hydrogen-bonding interactions between the peptide backbone and the peptide-binding groove. This modulation affects the characteristics of the B pocket and the stability of the loop region between the 310 helix and the α1 helix, leading to significant changes in the structure and stability of the peptide-MHC-I complex (pMHC-I). Moreover, the proportion of different residues at position 62 among Anpl-UAAs may reflect the correlation between pAnpl-UAA stability and duck body temperature. This research not only advances our understanding of the Anpl-UAA structure but also deepens our insight into the impact of MHC-I micropolymorphism on peptide binding.


Ducks , Histocompatibility Antigens Class I , Animals , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Peptides/chemistry , Peptides/genetics , Polymorphism, Genetic , Protein Stability , Amino Acid Sequence , Protein Binding , Alleles , Antigen Presentation , Models, Molecular
17.
Nanoscale ; 16(17): 8317-8334, 2024 May 02.
Article En | MEDLINE | ID: mdl-38592744

The emergence of immunotherapy has marked a new epoch in cancer treatment, presenting substantial clinical benefits. Extracellular vesicles (EVs), as natural nanocarriers, can deliver biologically active agents in cancer therapy with their inherent biocompatibility and negligible immunogenicity. However, natural EVs have limitations such as inadequate targeting capability, low loading efficacy, and unpredictable side effects. Through progress in genetic engineering, EVs have been modified for enhanced delivery of immunomodulatory agents and antigen presentation with specific cancer targeting ability, deepening the role of EVs in cancer immunotherapy. This review briefly describes typical EV sources, isolation methods, and adjustable targeting of EVs. Furthermore, this review highlights the genetic engineering strategies developed for delivering immunomodulatory agents and antigen presentation in EV-based systems. The prospects and challenges of genetically engineered EVs as cancer immunotherapy in clinical translation are also discussed.


Extracellular Vesicles , Genetic Engineering , Immunotherapy , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Animals , Antigen Presentation
18.
Cell Rep ; 43(4): 114096, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38607919

Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.


Antigens, Neoplasm , Carcinogenesis , Macrophages, Peritoneal , Animals , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/immunology , Female , Mice , Carcinogenesis/pathology , Carcinogenesis/immunology , Carcinogenesis/metabolism , Humans , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Cross-Priming/immunology , Cell Line, Tumor , Phagosomes/metabolism , Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Actins/metabolism
19.
Nature ; 629(8010): 193-200, 2024 May.
Article En | MEDLINE | ID: mdl-38600383

Sex differences in mammalian complex traits are prevalent and are intimately associated with androgens1-7. However, a molecular and cellular profile of sex differences and their modulation by androgens is still lacking. Here we constructed a high-dimensional single-cell transcriptomic atlas comprising over 2.3 million cells from 17 tissues in Mus musculus and explored the effects of sex and androgens on the molecular programs and cellular populations. In particular, we found that sex-biased immune gene expression and immune cell populations, such as group 2 innate lymphoid cells, were modulated by androgens. Integration with the UK Biobank dataset revealed potential cellular targets and risk gene enrichment in antigen presentation for sex-biased diseases. This study lays the groundwork for understanding the sex differences orchestrated by androgens and provides important evidence for targeting the androgen pathway as a broad therapeutic strategy for sex-biased diseases.


Androgens , Cells , Sex Characteristics , Single-Cell Analysis , Transcriptome , Animals , Female , Humans , Male , Mice , Androgens/metabolism , Androgens/pharmacology , Antigen Presentation/drug effects , Antigen Presentation/genetics , Immunity, Innate , Lymphocytes/metabolism , Lymphocytes/cytology , Lymphocytes/immunology , Lymphocytes/drug effects , Mice, Inbred C57BL , Transcriptome/drug effects , Transcriptome/genetics , UK Biobank , Cells/drug effects , Cells/immunology , Cells/metabolism
20.
Front Immunol ; 15: 1337973, 2024.
Article En | MEDLINE | ID: mdl-38665920

Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complex offers a promising strategy for immunotherapy due to their specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer using pH(low) insertion peptides (pHLIP). We demonstrated the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and activation of T cells. This work highlights the potential of pHLIP as a vehicle for the targeted delivery of antigenic peptides and its presentation via MHC-bound complexes on cancer cell surface for activation of T cells with implications for enhancing anti-cancer immunotherapy.


Antigen Presentation , Membrane Proteins , Oligopeptides , Humans , Antigen Presentation/immunology , Animals , Antigens, Neoplasm/immunology , Cell Line, Tumor , Immunotherapy/methods , Acidosis/immunology , Lymphocyte Activation/immunology , Tumor Microenvironment/immunology , Mice , T-Lymphocytes, Cytotoxic/immunology , Peptides/immunology , Hydrogen-Ion Concentration , Melanoma/immunology , Melanoma/therapy
...